Influence of hardening on the cyclic behavior of laminate microstructures in finite crystal plasticity

نویسندگان

  • D. M. Kochmann
  • K. Hackl
چکیده

We investigate the cyclic behavior of laminate microstructures in finite-strain crystal plasticity and the resulting stress-strain response, based on a variational, incremental description of the microstructure evolution. The nonconvex free energy density in multiplicative singleand multi-slip plasticity gives rise to the formation of fine-scale deformation structures, experimentally observed as complex material microstructures. Here, we treat first-order laminate microstructures and model their origin and their subsequent evolution. Interestingly, the cyclic behavior of such microstructures has been reported to exhibit a gradual degeneration of the laminate as well as of the stress-strain hysteresis loop, leading to an elastic shakedown. However, previous results have predicted the occurrence of this final, steady state within a few load cycles, which has appeared physically doubtful. Therefore, we analyze here the influence of work hardening in single-slip and of latent hardening in double-slip plasticity on the laminate microstructures and the corresponding stress-strain responses during cyclic loading. Results indicate that the amount of hardening considerably affects the rate at which the stress-strain hysteresis and the laminate degenerate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constitutive Model for Multi-laminate Induced Anisotropic Double Hardening Elastic-plasticity of Sand

A constitutive multi-laminate based elastic-plastic model developed to be capable of accounting induced anisotropic behavior of granular material such as sand. The fabric feature or grain orientation characteristic effects through medium are considered in a rational way under any complex stress path, including cyclic loading. The salient feature of the developed model is a non-associative on pl...

متن کامل

Ratcheting crystal plasticity modeling in microstructure of magnesium alloy under stress-controlled cyclic tensile loading with non-zero mean stress

Todays, the requirement of lowering the vehicle weight for the reduction of the fuel consumption and emissions, one of the methods considered by designers is to use the ligh magnesium alloy under cylclic loadings. In this article, considering the microstructure of the AZ91D magnesium alloy, its crystalline structure, a model for predicting the ratcheting behavior of this alloy was adapted and v...

متن کامل

Cyclic Behavior of Beams Based on the Chaboche Unified Viscoplastic Model

In this paper, ratcheting behavior of beams subjected to mechanical cyclic loads at elevated temperature, using the rate dependent Chaboche unified viscoplastic model with combined kinematic and isotropic hardening theory of plasticity, is investigated. A precise and general numerical scheme, using the incremental method of solution, is developed to obtain the cyclic inelastic creep and plastic...

متن کامل

A Constitutive Model for Sands

In this paper, an elastoplastic constitutive model is presented for predicting sandy soil behavior under monotonic and cyclic loadings. The model is based on the CJS3 model that takes into account deviatoric and isotropic mechanisms of plasticity. The flow rule in deviatoric mechanism is non-associated and a kinematic hardening law controls the evolution of the yield surface. In the present s...

متن کامل

A Constitutive Model for Sands

In this paper, an elastoplastic constitutive model is presented for predicting sandy soil behavior under monotonic and cyclic loadings. The model is based on the CJS3 model that takes into account deviatoric and isotropic mechanisms of plasticity. The flow rule in deviatoric mechanism is non-associated and a kinematic hardening law controls the evolution of the &#10yield surface. In the present...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010